
A Minimum of Alignment Energy

In Section 5 we claimed that the normalized solutionψ = ψ̃/‖ψ̃‖
of

(A−λ(t)I)ψ̃= φ

for λ(t) ∈ (−∞,λ1) yields a global minimum of Es,t(ψ) over all
‖ψ‖ = 1. Here we prove this fact and show the relationship
between λ and t. For simplicity we assume throughout that
‖φ‖ = 1. Furthermore, we will only use the real part of the
product 〈〈., .〉〉 in this section.

At a constrained minimum the constraint must be fulfilled and
the gradients of energy and constraint must be parallel, i.e., there
exists a Lagrange multiplier λ/2 such that

Aψ− t
1−t
φ = λ(t)ψ. (20)

Substituting ψ = ψ̃/‖ψ̃‖ we find it to solve this equation for
t = (1+ ‖ψ̃‖)−1.

Notice now how for t → 0, ψ approaches the eigenvector belong-
ing to the smallest eigenvalue λ1 (we are working with a positive
semidefinite Hermitian operator), since we are looking for a min-
imum of the energy. To see the behavior for t → 1 consider the
inner product of Eq. (20) with ψ

〈〈Aψ,ψ〉〉= λ(t) + t
1−t
〈〈φ,ψ〉〉.

Together with
〈〈Aψ,ψ〉〉 ≤ 〈〈Aφ,φ〉〉,

which we will show in a moment, we get

λ(t)≤ 〈〈Aφ,φ〉〉 − t
1−t
〈〈φ,ψ〉〉.

As t → 1 the scalar product 〈〈φ,ψ〉〉 → 1 and so λ(t)→−∞.

To see that
〈〈Aψ,ψ〉〉 ≤ 〈〈Aφ,φ〉〉

we consider that for a minimizer ψ

〈〈Aψ,ψ〉〉 − t
1−t
〈〈φ,ψ〉〉 ≤ 〈〈Aφ,φ〉〉 − t

1−t
‖φ‖2.

With ‖φ‖= 1 we get

〈〈Aψ,ψ〉〉 ≤ 〈〈Aφ,φ〉〉 − t
1−t
(1− 〈〈φ,ψ〉〉)

and since 〈〈φ,ψ〉〉 ≤ 1 the desired bound.

Together we see that as t → 0, λ(t)→ λ1 and for t → 1, λ(t)→
−∞.

Finally we show that there exists a strictly monotone analytic
function t(λ) : (−∞,λ1)→ (0, 1).

Since the resolvent

R(λ) = (A−λI)−1

is a bounded self-adjoint operator which is an analytic function
of λ so is

ψ(λ) =
R(λ)φ
‖R(λ)φ‖

and t(λ) = (1+ ‖R(λ)φ‖−1).

Now assume by contradiction that t(λ) is not strictly monotone.
Then there exists a λ0 ∈ (−∞,λ1) for which t ′(λ0) = 0. Taking
the derivative at λ0 of Eq. (20) we find

(A−λ0 I)ψ′(λ0)−ψ(λ0) = 0.

Taking the inner product of this equation with ψ′(λ0) the
second term vanishes (since ‖ψ‖ = 1) leading to 〈〈(A −
λ0 I)ψ′(λ0),ψ′(λ0)〉〉 = 0, which contradicts the positive defi-
niteness of A−λ0 I .

Together these results show that solving

(A−λ(t)I)ψ̃= φ

for a choice of λ ∈ (−∞,λ1) finds a global minimizer of Es,t(ψ)
for t(λ), a strictly monotone function with range (0,1). For
λ(t) → λ1, t → 0 (i.e., no alignment) while for λ(t) → −∞,
t → 1 (i.e., no smoothing).

B Poincaré-Hopf

In this Section we assign to every n-direction field ψ an index
indextψ ∈ {−1,0,1} on each triangle t. This is how we locate
the singularities and label them as positive or negative. Under
some smoothness assumption on the surface we will prove a
discrete version of the Poincaré-Hopf theorem. A proof in the
smooth case can be found in [Ray et al. 2008].

Recall that we describe the parallel transport of n-vectors by
transport coefficients ri j defined for each oriented edge ei j . They
can be thought of as an angle valued 1-form, i.e., they satisfy
r ji = r−1

i j . For each face t i jk there is a unique real number Ωi jk ∈
(−π,π) such that

ri j r jk rki = eıΩi jk .

We call Ω the curvature 2-form of the transport.

For a face t = t i jk we call the total curvature pushed into the
triangle from its three vertices the geometric curvature

σt := siα
jk
i + s jα

ki
j + skα

i j
k −π

of t. A triangle mesh is called n-smooth if for each face we have

|σt |<
π

n
.

On an n-smooth mesh we have Ωt = nσt and therefore a Gauß-
Bonnet type theorem:

∑

t∈T

Ωt = 2nπχ.

Here χ is the Euler characteristic of the mesh.

Let now ψ be an n-direction field given by complex numbers ui
of norm one for each vertex. Then for each edge ei j we define
the rotation angle of ψ as the unique number ωi j ∈ (−π,π) such
that

u j = eıωi j ri jui .

Then for each face t = t i jk we have ωi j +ω jk +ωki + Ωi jk ∈
(−4π, 4π) and eı(ωi j+ω jk+ωki+Ωi jk) = 1. This means that for every
face we have an integer

indextψ := 1
2π
(ωi j +ω jk +ωki +Ωi jk) ∈ {−1, 0,1}.

In the language of Discrete Exterior Calculus this could be ex-
pressed as

indexψ= 1
2π
(dω+Ω)

If we sum this equation over all faces, the rotation angles cancel
and we are left with the

Discrete Poincaré-Hopf theorem: On an n-smooth closed tri-
angle mesh the index sum of every n-direction field equals 2nχ
where χ is the Euler characteristic of the mesh.



C Difference of Anti-Holomorphic and Holo-
morphic Energy

Here we show that for any smooth n-vector field ψ we have
EA(ψ)− EH(ψ) =

1
2

∫

M
nK |ψ|2dA− 1

2

∫

∂M
Im〈∇ψ,ψ〉. First we

spell out all the requirements, each of which is fulfilled in our
setting, of the theorem and a few facts that we will use during
the derivation.

Let M be an oriented surface with Riemannian metric. Denote
by J the complex structure on M . Suppose we have a complex
line bundle L over M , i.e., L is a 2-dimensional real vector bun-
dle with a complex structure J . Our ψ are sections of such a
line bundle. Assume that L comes with a complex connection
∇, meaning ∇ is compatible with J : ∇X (Jψ) = J∇Xψ for all
sections ψ of L and all vector fields X . Then a section ψ is called
holomorphic resp. anti-holomorphic if

0= ∂̄Xψ := 1
2
(∇Xψ+ J∇JXψ)

0= ∂Xψ := 1
2
(∇Xψ− J∇JXψ).

Ifψ is a section of L, at each point p ∈ M the linear map∇ψ from
the 2-dimensional real vector space Tp M into the 2-dimensional
real vector space Lp can be decomposed into a complex linear
part (∂ψ)p and an anti-linear part (∂̄ ψ)p and we can write

∇= ∂ + ∂̄ .

Now suppose in addition that each LP comes with a Hermitian
scalar product 〈., .〉p that is invariant under J and that ∇ is a
metric connection, i.e.,

X 〈ψ,ϕ〉= 〈∇Xψ,ϕ〉+ 〈ψ,∇Xϕ〉.

Replacing here X by some Lie bracket [X , Y ] we obtain

〈∇[X ,Y ]ψ,ϕ〉+ 〈ψ,∇[X ,Y ]ϕ〉= [X , Y ]〈ψ,ϕ〉
= X (〈∇Yψ,ϕ〉+ 〈φ,∇Yϕ〉)− Y (〈∇Xψ,ϕ〉+ 〈ψ,∇Xϕ〉)
= 〈∇X∇Yψ,ϕ〉+ 〈ψ,∇X∇Yϕ〉 − 〈∇Y∇Xψ,ϕ〉 − 〈ψ,∇Y∇Xϕ〉

Thus the curvature tensor R of L defined by

R(X , Y )ψ=∇X∇Yψ−∇Y∇Xψ−∇[X ,Y ]ψ

satisfies
〈R(X , Y )ψ,ϕ〉+ 〈ψ, R(X , Y )ϕ〉= 0.

In particular this implies that 〈R(X , Y )ψ,ψ〉 is always imaginary.
Thus there is a real-valued 2-form Ω on M such that

R(X , Y )ψ= Ω(X , Y )Jψ.

In case L is the tangent bundle TM , the Gaussian curvature K of
M at a point p is defined in terms of a unit vector X ∈ Tp M as

K = 〈R(X , JX )JX , X 〉=−Ω(X , JX ).

Thus, if σ denotes the volume form, the curvature 2-form of the
tangent bundle is Ω =−Kσ. We are mostly interested in the case
L = TM⊗n, in which case we have Ω =−nK dA and therefore

R(X , Y )ψ=−nK dA(X , Y )Jψ.

The Dirichlet energy of a section ψ of L is defined as

ED(ψ) =
1
2

∫

M

|∇ψ|2dA,

where we view ∇ψ as a 1-form with values in L and the squared
norm of such a 1-form ω at a point p ∈ M is defined as

|ωp|2 = |ω(X )|2 + |ω(Y )|2

where {X , Y } form an orthonormal basis for Tp M .

Similarly, we define the holomorphic resp. anti-holomorphic en-
ergy of ψ as

EH(ψ) =
1
2

∫

M

|∂̄ ψ|2dA EA(ψ) =
1
2

∫

M

|∂ψ|2dA.

Theorem: The holomorphic and anti-holomorphic energies of a
section ψ are related as

EA(ψ)− EH(ψ) =
1
2

∫

M

nK |ψ|2dA − 1
2

∫

∂M

Im〈∇ψ,ψ〉.

Proof: Because of

Re〈∇ψ,ψ〉= 1
2
d〈ψ,ψ〉

we can define a real-valued 1-form η on M via

〈∇ψ,ψ〉= 1
2
d〈ψ,ψ〉+ ıη(X ).

Then for a locally defined unit vector field X we have

ıdη(X , JX ) = X 〈∇JXψ,ψ〉 − (JX )〈∇Xψ,ψ〉 − 〈∇[X ,JX ]ψ,ψ〉
= 〈R(X , JX )ψ,ψ〉+ ı(〈J∇JXψ,∇Xψ〉+ 〈∇Xψ, J∇JXψ〉)

= ı(nK |ψ|2 + |∂̄ ψ|2 − |∂ψ|2)dA(X , JX ).

Thus
dη= (nK |ψ|2 + |∂̄ ψ|2 − |∂ψ|2)dA

and our claim follows by Stokes theorem.

D Integrals

In this section we give a derivation of all the integrals needed in
the finite element discretization of the smooth theory, and begin
with the construction of the basis sections.

D.1 PL Basis Sections

The PL basis sections Ψi are defined by extending the basis X i
from each vertex into the incident triangles through parallel
transport along radii, giving us a unit basis section Φi supported
on all incident triangles. Φi is then linearly attenuated with the
standard PL hat function at vi to give us Ψi . On a single incident
triangle, say t i jk, this amounts to

Ψi = biΦi ,

where bi is the standard barycentric coordinate function for vi in
t i jk.

While this procedure, together with the fact that the curvature
is defined everywhere, uniquely defines the PL basis sections
Ψi we do not have a closed form expression for them. Yet we
can work out all required integrals in closed form due of our
earlier assumption that the curvature is constant in each triangle
(Eq. (14)). Specifically, the constancy of curvature over t i jk gives



us the holonomy angle Ωt′ (Eq. (13)) along the boundary of any
sub-triangle t ′ ⊂ t i jk as a fraction of the area:

Ωt′ =

∫

t′
nKdA= nKi jk|t ′|,

where |t ′| denotes the area of t ′ (see Eq. (14)).

This brings us to the starting position.

D.2 Mass Matrix (L2 Metric)

Consider the Hermitian product (complex anti-linear resp. linear
in the left resp. right factor) of basis sections restricted to the
triangle t i jk

〈〈Ψ j ,Ψk〉〉i jk :=

∫

ti jk

〈Ψ j ,Ψk〉dA

These determine the L2 metric on the space of PL sections over a
triangle and define the local mass matrix.

Let v be inside t i jk with barycentric coordinates bi , b j , bk

v = bi vi + b j v j + bk vk,

and consider the integrand of the mass matrix as a function of v

〈Ψ j(v),Ψk(v)〉= b j bk〈Φ j(v),Φk(v)〉. (21)

We know that Φ j is parallel along e jk, implying

Φ j(vk) = r jkΦk(vk)

(cf. Eq. (2); Fig. 17). Moreover Φk is parallel along the ray from

Figure 17: The angle between two basis sections at some point v
in t i jk can be deduced from the holonomy Ωt′ of the sub-triangle
t ′ = {vk, v, v j} and the known transport along e jk.

vk to v and Φ j along the ray from v to v j . Since parallel transport
around t ′ = {vk, v, v j}, i.e., from vk to v on to v j and finally back
to vk recovers the holonomy angle of t ′ we get

〈Φ j(v),Φk(v)〉r jk = eıΩt′ = eıΩi jk bi . (22)

(using Eqs. (13) and (14). Putting Eqs. (21) and (22) together
and integrating symbolically we get

〈〈Ψ j ,Ψk〉〉i jk = r̄ jk|t i jk|
6eıΩi jk−6−6ıΩi jk+3Ω2

i jk+ıΩ3
i jk

3Ω4
i jk

.

For the product of a basis section with itself the curvature does
not play a role and one obtains ‖Ψi‖2

i jk = |t i jk|/6.

This completely determines the metric on the space of basis n-
vector fields.

D.3 Dirichlet Energy

To compute the Dirichlet energy we need the covariant deriva-
tives of Φ j and Φk. To this end we will employ a particular
(linear) parameterization f (x , y) of the embedding pi jk of t i jk
with f (0,0) = pi , f (1,0) = p j and f (0,1) = pk, and will treat
Φ and Ψ as defined on the image of f in this section. Denote
by ∂x and ∂y the tangent coordinate frame corresponding to the
coordinates x , y (Fig. 18).

Figure 18: Using the parameterization f we compute the covariant
derivative of a basis n-vector field Φ j using the local section ξ.

To compute ∇∂y
Φ j at some point p in the interior of the triangle,

let ξ be a section on the triangle t i jk that agrees with Φ j for y = 0
and is parallel along the lines {x = const}, giving ∇∂y

ξ= 0. For
p = f (x , y) let q := f (x , 0), then the holonomy around tpq j is
Ωpq j = (1− x)yΩi jk and consequently

eı(1−x)yΩi jkξ(p) = Φ j(p).

This gives us

∇∂y
Φ j = (∂y eı(1−x)yΩi jk )ξ= ı(1− x)Ωi jkΦ j .

The derivative ∇∂x
Φk follows immediately through interchange

of x and y . Taking account of the orientation, we obtain

∇∂x
Φk =−ı(1− y)Ωi jkΦk.

Since by construction Φ j is parallel along rays from v j and Φk
along rays from vk we get a linear relationship between the co-
variant derivative of Φ j with respect to ∂x and ∂y (and similarly
for Φk)

0= (1− x)∇∂x
Φ j − y∇∂y

Φ j 0= x∇∂x
Φk + (y − 1)∇∂y

Φk

which give us all the covariant derivatives for Φ j and Φk. For
Ψ j = xΦ j and Ψk = yΦk this results in

∇∂x
Ψ j = (1+ ıΩi jk x y)Φ j , ∇∂y

Ψ j = ıΩx(1− x)Φ j ,

∇∂x
Ψk =−ıΩi jk y(1− y)Φk, ∇∂y

Ψk = (1− ıΩi jk x y)Φk.

To simplify the computation of the integrals we now switch from
the basis {∂x ,∂y} to an orthogonal basis {E1, E2}. Letting

g11 = |p j−pi |2, g12 = 〈p j−pi , pk−pi〉= g21, g22 = |pk−pi |2,

the orthogonal basis follows as

E1 =
1
p

g11
∂x , E2 =

1
2|ti jk |

p
g11
(g11∂y − g12∂x).



With respect to this basis we get

∇E1
Ψ j =

1
p

g11
(1+ ıΩi jk x y)Φ j ,

∇E2
Ψ j =

1
2|ti jk |

p
g11
(−g12 + ıΩi jk(g11 x(1− x)− g12 x y))Φ j ,

∇E1
Ψk =

1
p

g11
(−ıΩi jk y(1− y))Φk,

∇E2
Ψk =

1
2|ti jk |

p
g11
(g11 + ıΩi jk(g12 y(1− y)− g11 x y))Φk.

With this we have all the necessary components to compute the
Dirichlet products and integrate them to yield

〈〈∇Ψ j ,∇Ψ j〉〉i jk =
1

4|ti jk |

h

g22 +Ω
2
i jk

3g11−3g12+g22

90

i

,

〈〈∇Ψ j ,∇Ψk〉〉i jk =
r̄ jk

|ti jk |Ω4
i jk
[(3g11 + 4g12 + 3g22)

+ ıΩi jk(g11 + g12 + g22)− ıΩ3
i jk

g12

6

+Ω4
i jk

g11−2g12+g22

24
− ıΩ5

i jk
g11−2g12+g22

60

+ (−(3g11 + 4g12 + 3g22)
+ ıΩi jk(2g11 + 3g12 + 2g22)

+Ω2
i jk

g11+2g12+g22

2
)eıΩi jk].

D.4 Boundary Terms

The proof in App. C applies to a single triangle t and we only
need to compute the boundary term, since the nK‖Ψ‖2

i jk term is
the curvature weighted mass matrix (App. D.2).

We begin by observing that the 1-form 〈∇Ψ j ,Ψk〉 is nonzero only
on e jk. Moreover, since 〈∇Ψi ,Ψi〉= d|Ψi |2, it is real for matching
indices giving us
∫

∂ t

Im〈∇Ψ,Ψ〉=
∑

ei j∈∂ t

Im

∫

ei j

�

ᾱiα j〈∇Ψi ,Ψ j〉+ ᾱ jαi〈∇Ψ j ,Ψi〉
�

.

Note also that d〈Ψi ,Ψ j〉= 〈∇Ψi ,Ψ j〉+〈∇Ψ j ,Ψi〉. Since Ψi(v j) =
0=Ψ j(vi) Stokes’ theorem yields

0=

∫

∂ ei j

〈Ψi ,Ψ j〉=
∫

ei j

〈∇Ψi ,Ψ j〉+
∫

ei j

〈∇Ψ j ,Ψi〉,

which we use to simplify the boundary edge sum

∫

∂ t

Im〈∇Ψ,Ψ〉=
∑

ei j∈∂ t

2 Im

 

ᾱiα j

∫

ei j

〈∇Ψi ,Ψ j〉

!

.

We now turn to an individual edge term. Parameterize e jk

with a constant speed γ: [0,1] → M , i.e., |γ′| = |p jk|. Due to
db j(γ′) =−1 for b j the barycentric coordinate function of v j , and
the parallelity of Φ j along e jk, we get

∇γ′Ψ j = db j(γ
′)Φ j + b j∇γ′Φ j =−Φ j ,

and hence
∫

e jk

〈∇Ψ j ,Ψk〉=
∫ 1

0

〈∇γ′Ψ j ,Ψk〉d t =−
∫ 1

0

bk〈Φ j ,Φk〉d t =− r̄ jk

2
.

This finally yields
∫

∂ t

Im〈∇Ψ,Ψ〉=−
∑

e jk∈∂ t

Im
�

r̄ jkᾱ jαk

�

Notice that for an edge e jk with two incident triangles (not on
the boundary) the corresponding terms from each triangle cancel
out, leaving us with only a sum over the boundary of the triangle
mesh.

In the flat case (Ωi jk = 0) these boundary terms are simply the
areas of the range ofψ seen as a complex function, i.e., 2EH(ψ) =
ED(ψ) − A(ψ(M)) (compare with [Mullen et al. 2008, Eq. 2],
resp. [Pinkall and Polthier 1993, Eq. 2.1]).

D.5 Curvature Alignment

To perform alignment with principal curvature directions we need
to find a 2-vector corresponding to these directions (2-vector
since principal curvature directions are indistinguishable under
rotations by π). In the smooth setting, the principal curvature
directions are the eigendirections of the shape operator S, given
by the derivative of the Gauss map

dN = df ◦ S.

The Hopf differential Q is the trace-free part of the shape operator

S = H · I +Q,

where H = (κ1 + κ2)/2 is the mean curvature and I the identity.
Q has the principal curvature directions as eigendirections with
eigenvalues (κ1 −κ2)/2 and (κ2 −κ1)/2. Thus the information
provided by Q contains the (unoriented) direction of maximal
curvature together with a positive “intensity.” Thus Q can be
viewed as a 2-vector field.

Using a local complex coordinate z we can write any tangent
vector as a ∂

∂ x
where x is the real part of z and a ∈ C. Q is

anti-linear as an endomorphism of the tangent space (it anti-
commutes with J) and therefore we have

Q(a ∂

∂ x
) = qā ∂

∂ x
.

So with respect to a complex coordinate Q is described by a
complex function q.

In the discrete setting the shape operator survives in a distribu-
tional sense concentrated along edges [Cohen-Steiner and Mor-
van 2003]. Consider an edge e and its two incident triangles and
map them isometrically to the plane with e along the x-axis, then

Se = δyβe
∂

∂ y
d y = δy

βe
2
∂

∂ x
dz−δy

βe
2
∂

∂ x
dz̄.

Here δy is the delta distribution along across e, βe the dihedral
angle at e, dz = d x + ıd y , and dz̄ = d x − ıd y . Hence

qe =−δy
βe
2

.

Since q exists only as a distribution, we treat it as a functional
on the space of smooth sections. In particular we can pair it with
each of our PL 2-vector basis sections

q̃i := q(Ψi) =
∑

e3i

qe(Ψi) =−
1
4

∑

e3i

rieβe|pe|.

where the transport coefficient rie = eı2θi (X i ,e) depends on the
rescaled Euclidean angle between X i and e. Hence the coeffi-
cients q of the PL Hopf differential solve the matrix problem

Mq = q̃.




